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An attempt is made to explain the Reiner effect on the basis of the equations of 
the hydrodynamics of a viscous fluid in A. S. Predvoditelev's form. 

The unusual behavior of air in narrow gaps was first discovered experimentally by Reiner 
[i]. In the flow of air between two disks, one of which is rotating with high angular veloc- 
ity, the essence of this effect comes down to the fact that the air is intensively sucked 
in toward the center, creating an air "cushion" capable of supporting the stationary disk at 
certain rpm's and certain gap sizes. 

The fact that the Navier--Stokes equations do not describe the effect named must be con- 
sidered as established by now. Some authors have attempted to explain this effect from non- 
linear rheological equations, in doing which they have obtained qualitatively concurrent re- 
sults according to which additional normal stresses develop in the presence of pure shear. 
In this connection the opinion has become established among rheologists that the air behaves 
like a non-Newtonian fluid in this case. 

We have attempted to theoretically explain the Reiner effect on the basis of the equa- 
tions of a viscous fluid proposed by A. S. Predvoditelev. 

It is well known that the strict molecular-kinetic foundation of the Navier--Stokes equa- 
tions was laid down by J. C. Maxwell. The merit of this method consists in the fact that in 
this case the transition to continuum equations is accomplished with any velocity distribu- 
tion function of the atoms or molecules. However, in striving to obtain the Navier-Stokes 
equations Maxwell made the assumption that the translational velocities of two colliding mole- 
cules are the same along the paths traveled by the molecules between collisions. This bottle- 
neck in Maxwell's derivation was removed by Predvoditelev and the new hypothesis which he 
proposed concerning the translational velocities of two colliding molecules [2]. 

Predvoditelev's equati~ons for a monatomic gas have the form 

0---7-- +(1- -~)  grad -~-+rofVXV --13VdivV = - -  - - g r a d p + v  V +  graddivV (1) 
P 

Here the quantity ~ is called the Predvoditelev parameter of nonideal continuity, and it can 
be of either sign, since there is an arbitrariness in ascribing the larger translational veloc- 
ity to one of the colliding molecules. Actually, the sign of the parameter ~ must be deter- 
mined by the conditions of the specific problem. 

Let us now consider the problem of the motion of a viscous gas in the space between a 
rotating unbounded plane and a stationary plane parallel to it. Since several investigators 
have attempted to explain the Reiner effect as a manifestation of the compressibility of air, 
we, on the contrary, will be confined to the case of an incompressible gas. We can thereby 
show that the nature of the Reiner effect does not consist in this but that the allowance for 
compressibility should only make the calculation more exact. 

Now, the Predvoditelev equations for the steady state in a cylindrical coordinate sys- 
tem take the following form with allowance for the axial symmetry: 
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We can make the variables in system (2) dimensionless through the equations 

v = mRv, p - -  P- -P*  R e =  s~~ 
po~R 2 '  v 

After this the indicated system of equations takes the following form (we omit the bars above 
the dimensionless quantities): 

(1--~)  U ~ r  + w  = + - -  ' - -  az r Or ~ [ oF T 

av av vu 1 o2v 1 Ov 
( ] - ~ )  . ~ 7 / + w ~ Z +  - _ _ + _ _ .  r Re OP r Or 

(1 - -  [~) u - - + w  = -  
Or Oz ~ Re a? + 

1 Ou u )  02u ] 
r Or P + ~  , (3) 

P + aP J '  

1 aw ) a~w ] 
r O r  -t- az 2 J 

The continuity equation can be eliminated by the introduction of a stream function 
through the equations 

] a~ 1 a~  
U ~ - -  - - .  - -  , ~ ' ~ -  

r Oz r Or 
(4) 

We will seek the solution of system (3) in the form 

* = rV (z), u = - rf' (z), w = 2f (z), 

It should be noted that in this case the terms with (s/R) 2 
(3) we will now have 

v = r~  (z). 

are reduced to zero. 

( 5 )  

In place of 

1 - L  f '- + (1 - [3) ( f "  - 2f f " - -  r  = - ! 2p_ ; 
Re r Or 

1 

Re 
- - - q F  + 2(1 - -  f3) ( f '  ff~ - -  f f f Y )  = O; 

az Re f" -- 2 (l -- I~) (flY; 

(6) 

Here the prime denotes a derivative with respect to z. 

The solutions of system (6) with B = 0 have been studied in detail in [3]. 

The boundary conditions as applied to system (6) take the following form: 

at the stationary wall (z = 0) 

f (0) = o, f' (0) = o, ~ (0) = 0, 

at the rotating wall (z = i) 

f ( 1 ) =  1, f ' ( 1 ) =  1, ~ ( 1 ) =  1. 

(7)  

(8) 
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We will seek the solution for the pressure in the form p = rZ~ + F(z), with F = 0 if 
z = 0. After substituting the latter equality into the third equation of system (6) we ob- 
tain the ordinary differential equation 

By i n t e g r a t i n g  the  l a t t e r  we o b t a i n  the  f i n a l  e q u a t i o n  fo r  the  d i m e n s i o n l e s s  p r e s s u r e :  

P = r~D + ( ~ -  ) 2 [ -~-e f' -- 2 ( l -- [~) [~ ] . 

Now (6) changes  i n t o  a sys tem of two o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n s  

(9) 

1 
Re 
--y" q- (I -- ~)(f" -- 2if" "~*) + 2 ~  = O, 

1 

Re 
-- q~" q- 2(1 -- [B) (-- [cp' -{- f'cp) = 0 ,  

(10) 

while the extraneous boundary condition in (7) and (8) will be used to find the constant 9. 

We will seek the solution of system (i0) through a series expansion by Reynolds numbers: 

f = fo (z) + Re fi (z) + Re" [~ ( z )+  . . . .  
= % (z) + Re ~1 (z) + Re ~ ~, (z) + . . . .  

�9 = ~o'i~ Re ~i + R e~ ~ + �9 �9 

After substituting the latter into (i0) and equating the coefficients on the same powers 
of Re to zero, with allowance for the boundary conditions we now obtain 

3 
f 0 = 0 ,  v0=z ,  o o -  (1--9), 

20 

( l__z5 1 z ~ +  1 z~)  
71 ---- (1 - -  [3) \ 60 - -  2--6" ~ ' cpl = O, 

Henceforth we will be confined to the following approximations: 

f = Re fl + 0 (Re3), ~ = ~o + 0 (Re~-), @ = �9 o -~ 0 (ReZ). 

In t h i s  app rox ima t ion  Eq. (9) f o r  t he  p r e s s u r e  t ake s  the  form 

(ii) 

(12) 

P = - ~ 3  (1 - -~) r  2 + ( i ) 2 [  21~ e f ' - - 2 ( I - - ~ )  p ] .  ( 1 3 )  

We can t e s t  Eq. (13) on e x p e r i m e n t a l  m a t e r i a l  o b t a i n e d  by Z. P. Shul 'man and B. I .  P u r i s ,  co-  
workers of the Institute of Heat and Mass Exchange, Academy of Sciences of the Belorussian 
SSR, under the guidance of A. V. Lykov [4]. They built an experimental installation similar 
to Reiner's installation and measured the pressure at the stationary disk at three points 
along the radius. In this case the pressure of the surrounding medium was varied from i arm 
to 20 mm Hg, the angular velocity was varied in the range of 2000-3000 i/sec, and the size 
of the gap was taken as equal to from i0 -s to i0 -~ m. 

A series of graphs of the variation in the pressure drop Ap = p -- po along the radius 
on the stationary disk is presented in the indicated report. From these graphs we determined 
the values of the dimensionless pressure drop Ap = (p -- po)/po at distances equal to half the 
radius and constructed the functional dependence of this quantity on the dimensionless com- 

plex K = ~mR/spo. 

The parameter of nonideal continuity in application to this problem is determined as 
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J Fig. i. Dimensionless pressure excess 
at center of stationary disk. 

~____ ~ VoR (14) 

sp0 
where ~ is an experimental constant which is determined by the application of Eq. (13) to 
the experimental data presented in Fig. i. 

In order to perform this application we need to factor out the quantity Ap = (p -- po)/po 
from the left side of Eq. (13), after which we will have 

~(I + ~K) r ~ + --2(I +~K) p (15) 

Since the pressure drop p,- po must be assigned, Eq. (15) actually contains a single experi- 
mental constant ~ which, as we will see below, has a certain universality. 

Several considerations concerning the determination of the quantity p, --Po are given 
in [5]. We now take r = 0.5, z = 0, a = 1.847.10 a, and (p, -- po)/po = --0.1325 in Eq. (15), 
after which we will have 

Ap = - -  0 .1325+0.0375 (1 + 1.847.10 a K). (16)  

The solid line in Fig. 1 is drawn in accordance with Eq. (16), and it agrees well with the 
experimental points. The constant ~ is determined in application to one experimental point, 
but it is seen from Fig. 1 that it also retains the same value for the other experimental 
points which correspond to different experiments. It is just this which reveals its univer- 
sal character, at least within the scope of a single gas. 

Thus, the calculation which we performed does not contradict the experiment. Future 
refinement of the theory should proceed along the course of the allowance for compressibility 
and end effects. 

NOTATION 

u,v,w, radial, circular, and axial velocity components; p, pressure; Po, equilibrium 
pressure; p, density; R, characteristic radius of disk; s, distance between stationary and 
rotating disks; ~, angular velocity; Re, Reynolds number; ~, viscosity, taken as equal to 
1.83.10 -4 kg.sec/m2; v, kinematic viscosity; p,, pressure at center of stationary disk. 
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